BEM and the Neumann problem for the Poisson equa- tion on Lipschitz domains
نویسنده
چکیده
The weak Neumann problem for the Poisson eqution is studied on Lipschitz domain with compact boundary using the direct integral equation method. The domain is bounded or unbounded, the boundary might be disconnected. The problem leads to a uniquely solvable integral equation in H(∂Ω). It is proved that we can get the solution of this equation using the successive approximation method. AMS classification: 65N38
منابع مشابه
Semilinear Poisson problems in Sobolev-Besov spaces on Lipschitz domains
Extending recent work for the linear Poisson problem for the Laplacian in the framework of Sobolev-Besov spaces on Lipschitz domains by Jerison and Kenig [16], Fabes, Mendez and Mitrea [9], and Mitrea and Taylor [30], here we take up the task of developing a similar sharp theory for semilinear problems of the type ∆u − N(x, u) = F (x), equipped with Dirichlet and Neumann boundary conditions.
متن کاملSaint-Venant torsion of non-homogeneous anisotropic bars
The BEM is applied to the solution of the torsion problem of non-homogeneous anisotropic non-circular prismatic bars. The problem is formulated in terms of the warping function. This formulation leads to a second order partial differential equation with variable coefficients, subjected to a generalized Neumann type boundary condition. The problem is solved using the Analog Equation Method (AEM)...
متن کاملStiffeners Mechanical Effect Analysis by Numerical Coupling
Given any structure, we seek to find the solution of mechanical problem as precisely and efficiently as possible. Within this condition, the BEM is robust and promising development, standing out in the analysis of cases with occurrence of large stress gradients, as in problems of fracture mechanics. Moreover, in BEM the modeling of infinite means is performed naturally, without the use of appro...
متن کاملNonhomogeneous Neumann Problem for the Poisson Equation in Domains with an External Cusp
Abstract. In this work we analyze the existence and regularity of the solution of a nonhomogeneous Neumann problem for the Poisson equation in a plane domain Ω with an external cusp. In order to prove that there exists a unique solution in H(Ω) using the Lax-Milgram theorem we need to apply a trace theorem. Since Ω is not a Lipschitz domain, the standard trace theorem for H(Ω) does not apply, i...
متن کاملBoundary Value Problems on Lipschitz Domains in R or C
The purpose of this note is to bring update results on boundary value problems on Lipschitz domains in R or C. We first discuss the Dirichlet problem, the Neumann problem and the d-Neumann problem in a bounded domain in R. These problems are the prototypes of coercive (or elliptic ) boundary value problems when the boundary of the domain is smooth. When the domain is only Lipschitz, solutions t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009